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1 Introduction

Trusses are structures consisting of straight bars
connected at nodes and arranged in triangular pat-
terns. They are the simplest structures to anal-
yse and they have been used many times in the
construction of bridges, antennas, space structures,
etc. See Fig. 1 for an illustration of planar trusses.

Figure 1: Truss examples.

2 The bar

A bar is a one-dimensional straight structural
model that can be employed to sustain axial loads.
In classical structural analysis, the bar carries a
axial stress resultant, denoted as N , that is pro-

portional to the axial or longitudinal strain at each
of its points.

Let us consider initially a bar of constant cross
section A made of an elastic material with Young
modulus E and subject to a constant stress resul-
tant N . If the initial and current lengths of the bar
are ℓ, ℓ̃, respectively, we define the axial strain as
the scalar

ϵ :=
ℓ̃− ℓ

ℓ
=

∆ℓ

ℓ
, (1)

and its relation with N is given by the linear rela-
tion

N = EAϵ . (2)

The internal energy of an elastic bar is given by

Vint =

∫ ℓ

0

1

2
EAϵ2 dx =

1

2
EAℓ ϵ2 . (3)

3 The bar on the plane

As illustrated in Fig. 1, bars are often placed
in tilted configurations that make their analysis
slightly more complicated that explained in Sec-
tion 2. To introduce the modifications we focus
on planar trusses, although the extension to three-
dimensional problems is straightforward.

Consider the truss of Fig. 2. It connects two
nodes with labels 1 and 2, respectively, whose ref-
erence positions are the vectors r1 and r2 and have
displacements U1,U2. The length of the rod is

ℓ = |r2 − r1| , (4)

and we define the unit vector

d1,2 :=
1

ℓ
(r2 − r1) (5)
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that goes from node 1 to node 2. With these defi-
nitions it is immediate to show that the axial strain
of the rod can be calculated as

ϵ =
1

ℓ
(U2 −U1) · d1,2 , (6)

where we have used the dot product of vectors on
the plane. The axial stress resultant can be calcu-
lated using Eq. (25) and the internal energy with
Eq. (12).
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Figure 2: Bar on a plane.
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Figure 3: A simple triangular truss.

4 Solution of a planar truss using
equilibrium and compatibility

Consider now the simplest planar truss, as depicted
in Fig. 3. It consists of two bars pinned at the

bottom and connected at node 3. If the truss is
subject to a horizontal force F on the free node
one could be interested in finding the axial force
N in both trusses, the reactions at the supports,
as well as the displacement U on node 3. There
are several ways of solving this problem and we
describe first the so-called equilibrium method that
is very simple to explain and use in simple trusses
such as this one.

To start consider the static equilibrium on all
the forces that act upon node 3. If the tilted bar
is labeled as 1 and the vertical one as 2, then the
equations of horizontal and vertical equilibrium are,
respectively,

N1 cos θ = F ,

N1 sin θ +N2 = 0 ,
(7)

which can be solved to obtain

N1 = F sec θ, F2 = −F tan θ. (8)

With this two values we conclude that bar 1 is in
traction, and bar 2 is in compression. The strains
of the two bars are

ϵ1 =
N1

EA
=

F sec θ

EA
, ϵ2 =

N2

EA
= −F tan θ

EA
.

(9)
Once we know the strains in both bars, we can re-
cover the elongation in each of them using Eq. (1)
to get

∆ℓ1 = ϵ1ℓ1 =
Fa sec2 θ

EA
, ∆ℓ2 = ϵ2ℓ2 = −Fa tan2 θ

EA
.

(10)
The vertical displacement of node 3 coincides with
∆ℓ2. The horizontal displacement of this node can
only be calculated with some simple, but cumber-
some geometrical calculations that give

Ux = ∆ℓ2(cos θ + sin θ tan θ)−∆ℓ1 tan θ . (11)

Details are omitted.

Remarks:

a) The reactions on nodes 1 and 2 can be obtained
by projecting the stress resultants.

b) This equilibrium method is relatively straight-
forward because the truss is statically deter-
minate. If we were, for example, to connect
a third bar from a new support to node 3,
the structure will be statically indeterminate
and its solution, employing equilibrium and
compatibility of deformations, would be fairly
cumbersome.
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c) For all types of trusses, both statically deter-
minate and indeterminate, the calculation of
nodal displacements is always complicated. In
fact, for the simple example of Fig. 3, the cal-
culations are already non-trivial. For a truss
with dozens or hundreds of bars this procedure
is too complex to be of practical use.

5 Solution of a planar truss using
energy methods

The determination of all the unknown variables of
the structure (reactions, strains, axial forces, and
displacements) using energy methods pivots on the
principle of the minimum potential energy, which
states that the total potential energy of the struc-
ture is at a minimum when it is in equilibrium. For
a truss, this energy is of the form

V (U) :=

M∑
e=1

V e
int(U)−

N∑
a=1

F a ·Ua , (12)

where e runs through the M bars and a through
the N nodes. The term V e

int refers to the internal
energy of bar e and is calculated using Eq. (12).

To use this method for the solution of the truss in
Fig. 3, we first need to calculate the internal energy
of each of the bars as a function of the displacement.
Using Eq. (6) we obtain

ϵ1 =
1

ℓ1
d1,3 · (U3 −U1) = Ux

cos θ

ℓ1
+ Uy

sin θ

ℓ1
,

ϵ2 =
1

ℓ2
d2,3 · (U3 −U2) = Uy

1

ℓ2
.

(13)
Therefore, the total potential energy of the struc-
ture is

V =
EAℓ1
2

(
Ux

cos θ

ℓ1
+ Uy

sin θ

ℓ1

)2

+
EAℓ2
2

(
Uy

1

ℓ2

)2

− F Ux

(14)

The equilibrium conditions are given by the relation
∇V = 0, that is,

0 =
EA

ℓ1
(Ux cos θ + Uy sin θ) cos θ − F ,

0 =
EA

ℓ1
(Ux cos θ + Uy sin θ) sin θ +

EA

ℓ2
Uy .

(15)

This is a liner system of equations. To solve it, let
us introduce the stiffness parameters

Kxx =
EA

ℓ1
cos2 θ , Kxy =

EA

ℓ1
sin θ cos θ ,

Kyy =
EA

ℓ1
sin2 θ +

EA

ℓ2
,

(16)

that allows us to rewrite Eq. (15) more compactly
as

KxxUx +KxyUy = F ,

KxyUx +KyyUy = 0 ,
(17)

whose solution is

Ux =

(
Kxx −

K2
xy

Kyy

)−1

F , Uy = −Kxy

Kyy
Ux .

(18)
Once the displacement of node 3 is known it is
straightforward to calculate the strains in the bars
using Eq. (13), and from them the axial forces and
reactions.

Remarks:

a) The method outlined here is completely gen-
eral (for linear trusses) and systematic: always
the same steps need to be followed and there is
no need of complex trigonometric derivations
in order to find the complete solution.

b) Whether the structure is statically determi-
nate or indeterminate plays no role at all and
the steps to be followed are identical in both
cases. In particular, statically indeterminate
problems are not more difficult than determi-
nate ones.

6 Matrix formulation

The energy method can be formulated alternatively
using matrix algebra, simplifying the computations
even further. Let us consider a bar such as the one
in Fig. 2. Its strain is

ϵ =
1

ℓ

[
−d1,2 d1,2

]{U1

U2

}
= b

{
U1

U2

}
, (19)

where b is the so-called strain matrix

b :=
1

ℓ

[
−d1,2 d1,2

]
. (20)

Introducing the constant κ := EAℓ and the stiffness
matrix k := bTκ b we have that the internal energy
of the bar can be written as

Vint =
1

2
uT bT κ bu =

1

2
uT ku , (21)

where u = ⟨U1 U2⟩T collects the displacements
in the two nodes of the bar. This last expression
makes explicit that the internal energy in a (linear
and elastic) truss is always a quadratic form.

In a truss that consists of several bars, the total
potential energy is thus

V =

M∑
e=1

1

2
uT
e keue −

N∑
a=1

fa ·Ua . (22)
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Here, the matrix ke is the stiffness matrix of bar e
and ue is, as before, the vector collecting the two
nodal displacements at the origin and the tip of the
same bar.

Global matrix expressions

Using matrix algebra we can define an expression
for the energy that is even more compact than
Eq. (22). To start, let U be the array that collects
the displacements of all the nodes that are allowed
to move. Then, let us note that the strain on bar e
is ϵe = be ue and can be written alternatively as

ϵe =
[
b1e b2e

]{u1
e

u2
e

}

=
[
0 · · · b1e 0 · · · b2e · · · 0

]


U1
x

U1
y

U2
x

U2
y
...

UN
x

UN
y


= Be U ,

(23)
where now Be is a large vector full of zeros that
contains the two blocks b1e and b2e of dimensions
1× 2 at the appropriate positions. Note that if one
or two of the degrees of freedom associated with
the block bie, with i = 1 or 2, is constrained and
thus not represented in U , the corresponding block
or component of be should be removed.
Then, all the strains in all the elements can be

written compactly as

E =


ϵ1
ϵ2
...

ϵM

 =


B1

B2

...
BM

U = BU . (24)

where B is the global strain matrix. Last, if we
define the constitutive matrix

C =


κ1I 0 · · · 0
0 κ2I · · · 0

0 0
. . . 0

0 · · · · · · κMI

 , (25)

then we note that the internal energy of the whole
truss can be written as

Vint =

M∑
e=1

1

2
uT
e keue =

1

2
UT KU (26)

with K being the global stiffness matrix

K = BT CB . (27)

Let us conclude by noting that if we define the
global force vector as F = ⟨f1 f2 · · ·fN ⟩T then
the total potential energy of the truss can be com-
pactly written as

V =
1

2
UT KU −UT F . (28)

Remarks:

a) From Eq. (28) we note that the equilibrium
equations, that is, the equations satisfied by
the minimizers of V are

0 = ∇V (U) = KU − F . (29)

b) The total energy Eq. (28) is a quadratic func-
tion of the displacement vector hence it has a
unique minimizer.

7 Element-by-element formulation

Expression (28) is the usual form of the energy em-
ployed in structural analysis that, in turn, leads to
the equilibrium equations (29) that were commonly
used in practice when calculations were done by
hand. These global expressions have the advantage
of being compact, but they are not practical be-
cause their construction involves the operations of
matrices (notablyB andC) that are almost empty,
and thus much of the operations involve multiply-
ing by zero. There is a slightly different derivation
that is more amenable to computer implementation
and is often preferred and is described next.

To start, let us consider a typical bar element
such as the one in Figure 1. It has length ℓe, ax-
ial stiffness EeAe and connects two nodes that are
locally labeled as 1 and 2 (meaning that each bar
connects a pair of nodes that are labeled also 1
and 2, but might be different from nodes 1 and 2
of other elements). If the position vectors of these
two nodes are referred to as r1e and r2e, respectively,
the relative vector that goes from node 1 to 2 and
the unit vector in this direction are

re = r2e − r1e , de =
1

ℓe
re . (30)

With these concepts, the strain of element e can be
calculated as

ϵe = de ·
u2
e − u1

e

ℓe
=
[
b1e b2e

]{u1
e

u2
e

}
= be ue. (31)

Here ue is a vector of length 4 that collects the
displacements of the two nodes of element e. Once
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the strain is known, the axial force on the element
is

Ne = EeAe ϵe . (32)

Recall that all the degrees of freedom of the truss
can be collected in a “large” vector U . This vec-
tor, which can be ordered in any arbitrary but fixed
way does not hold the displacements of those con-
strained nodes that are fixed or whose displacement
is imposed to a fixed value a priori.

The key concept to develop an element-by-
element formulation is to note that there exists a
map, referred to as id, that recovers, for every el-
ement e, the index in vector U of the degree of
freedom x or y in the local node i. More precisely,
Uid(e,i,α) is the displacement of the α coordinate
(x or y) of the local node i of element e, as placed
in the global vector U . By convention, if this dis-
placement is constrained, the scalar Uid(e,i,α) is not
contained in U but rather set to its known value.

Using this notation, the strain in element e can
be calculated as

ϵe = be ue

=
[
b1e b2e

]{u1
e

u2
e

}

=
[
b1e,x b1e,y b2e,x b2e,y

]
Uid(e,1,x)

Uid(e,1,y)

Uid(e,2,x)

Uid(e,2,y)


(33)

The powerful idea is that, by exploiting the local
or global expressions of the strain, all the quanti-
ties needed to solve the truss (energy, equilibrium
and stiffness) can be calculated in an element-by-
element fashion, as we detail next.

Potential energy

The calculation of the potential energy of a truss is
simply obtained with the two sums

V (U) =

M∑
e=1

1

2
EeAe ϵ

2
e ℓe −

N∑
a=1

fa ·Ua , (34)

where the strain ϵe is calculated, at the element
level, as in Eq. (33). The external potential energy
has to be computed by accumulating the contribu-
tion of each node.

Equilibrium equations

The equilibrium in the truss is given by Eq. (29),
expressing that U minimizes the total potential en-
ergy. The vector U has length Nf , the number of

degrees of freedom and there are as many equilib-
rium equations of the form

∂V

∂Ua
(U) = 0 , (35)

for a = 1, 2, . . . , Nf . Replacing the expression (34)
of the potential energy we obtain

0 =

M∑
e=1

EeAe ϵe
∂ϵe
∂Ua

ℓe − fa

=

M∑
e=1

Ne
∂ϵe
∂Ua

ℓe − fa.

(36)

The derivative of the element strain can be ef-
fected using Eq. (33). For that let us define the
Kronecker delta

δ(a, b) =

{
1 if a = b,

0 otherwise.
(37)

Then,

∂ϵe
∂Ua

=

2∑
i=1

∑
α∈{x,y}

bie,α δ(a, id(e, i, α)). (38)

Hence, the equilibrium equations are

fa =

M∑
e=1

2∑
i=1

∑
α∈{x,y}

f i
e,α δ(a, id(e, i, α)), (39)

where
f i
e,α = Ne b

i
e,αℓe (40)

is the internal energy of node e on the local node i
in the direction α, whose global label is id(e, i, α).
In practice, to compute all the element contribu-
tions to the internal forces, one must go element by
element calculating the vector

fe =


f1
e,x

f1
e,y

f2
e,x

f2
e,y

 = bTe Ne ℓe (41)

and add each components in the global equation
id(e, 1, x), id(e, 1, y), id(e, 2, x), id(e, 2, y), respec-
tively, if their degrees of freedom are constrained.
This process is referred to as assembling.

Stiffness matrix

The stiffness matrix K is used to solve the global
equilibrium equations (29). It is a matrix of di-
mensions (2Nf ) × (2Nf ). The component (a, b) is
defined as

Kab =
∂2V

∂Ua ∂Ub
=

∂fa
∂Ub

. (42)
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To calculate these scalars first we note that

∂Ne

∂Ub
= EeAe

∂ϵe
∂Ub

= EeAe

2∑
j=1

∑
β∈{x,y}

bje,β δ(b, id(e, j, β)).
(43)

Therefore, using Eqs. (39), (42) and (43) we get

Kab =

M∑
e=1

2∑
i,j=1

∑
α,β∈{x,y}

kije,αβδ(a, id(e, i, α))

δ(b, id(e, j, β)),

(44)

where
ki,je,αβ = bie,α bje,βEeAeℓe (45)

is the element stiffness of the local node pair (i, j)
in the directions (α, β) that corresponds to the
two global degrees of freedom with components
(id(e, i, α), id(e, j, β)).

As in the case of the equilibrium equations, in
practice the local stiffness matrices are computed
in an element-by-element fashion as a block of the
form

ke = EeAebeb
T
e ℓe . (46)

Once this 4 × 4 matrix is constructed, each of its
components are placed in the correct position of
the global stiffness, again by assembling them.
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